Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Fish Physiol Biochem ; 49(6): 1241-1255, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37870722

RESUMO

The intensive culture of characid teleosts for ornamental trade is highly dependent on live feed organisms, particularly Artemia nauplii, to provide nutrition through the larval stage. Live feeds have inherent disadvantages relative to prepared microparticulate diets (MDs), specifically availability, labor and cost. In this research, the dependence of larval Paracheirodon innesi on live Artemia was confirmed via a nutritional trial. Next, digestive system ontogeny was characterized from the onset of exogenous feeding through metamorphosis. P. innesi exhibited an agastric larval stage, as well as low digestive enzyme activity at the onset of exogenous feeding followed by abrupt increases in trypsin, lipase and pepsin activity. Differentiation of the stomach, including gastric gland formation and production of neutral mucopolysaccharides, as well as the onset of pepsin activity, did not occur until 20 days post hatch (dph; 5.24 ± 0.20 mm). This shift from agastric to gastric digestive modes is indicative of a proliferation of digestive capacity and subsequent prey diversity in other fish species exhibiting similar altricial larval stages.Based on this information, different schedules for weaning from Artemia to a MD were evaluated. For P. innesi fed until 32 dph, weaning beginning at 12 dph and 17 dph resulted in similar survival to live Artemia (mean: 22.0 ± 1.7%), and the MD resulted in the lowest survival (0.8 ± 0.3%). These results indicate that weaning is possible prior to gastric differentiation, potentially resulting in the reduction of Artemia use in the larval culture P. innesi.


Assuntos
Characidae , Animais , Larva , Neônio , Pepsina A , Desmame , Sistema Digestório
2.
J Fish Biol ; 93(5): 917-930, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30198116

RESUMO

Pectoral fin healing in fin spines and rays were examined in juvenile Atlantic sturgeon Acipenser oxyrinchus oxyrinchus following three different sampling techniques (n = 8-9 fish per treatment): entire leading fin spine removed, a 1-2 cm portion removed near the point of articulation, or a 1-2 cm portion removed from a secondary fin ray. Also, to determine whether antibiotic treatment influences healing, an additional group of fish (n = 8) was not given an injection of an oxytetracycline (OTC)-based antibiotic following removal of the entire leading fin spine. Following fin sampling, fish from different treatments were mixed equally between three large (4,000 I) recirculating systems and fin-ray healing and mortality were monitored over a 12 month period. To assess healing, blood samples were collected at 4 months to measure immune system responses, radiographs were taken at 4, 8 and 12 months to assess the degree of calcification in regions of damaged fins and fins were analyzed histologically at 12 months. Fish grew from a mean weight of 1.8 to 3.2 kg during the experiment and survival was near 100% in all treatments, with only one fish dying of unknown causes. Leukocyte counts, an indication of health status and survival were similar among treatments and in groups with or without antibiotic injection. Radiographs revealed mineralization took longer in fish with the entire leading fin spine removed and was the slowest near the point of articulation, presumably due to the greater structural support for the pectoral fin at this location. Histological sampling indicated spines and rays had similar healing patterns. Following injury, an orderly matrix of collagen bundles and many evenly spaced scleroblasts were present, transitioning to Sharpey fibres, with concentric layers forming lamellar bone. Healing and mineralization were characterized as periosteal osteogenesis and included embedded osteocytes surrounded by an osteoid seam. Chondroid formation was apparent in a few fractures not associated with treatments. The duration of time for external wound healing and internal mineralization of spines and rays depended on the fin treatment, with the slowest healing observed in fish with the most tissue removed, the entire leading fin spine.


Assuntos
Nadadeiras de Animais/fisiologia , Peixes/fisiologia , Regeneração , Cicatrização , Nadadeiras de Animais/patologia , Animais , Peixes/imunologia , Osteogênese , Oxitetraciclina/farmacologia , Regeneração/efeitos dos fármacos , Cicatrização/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...